Абрамцева Н.Ю., Вахрушева Т.В., Говорун В.М. Изменения в свойствах плазматической мембраны Acholeplasma laidlawii под действием тетрациклина. Антибиот, и химиотер. 1999; 44(2): 8—12.
Курносов Е.В., Юркевич Ю.В., Цыплен- ков П.В. Изучение комбинированного действия антибиотика и иммуностимулятора с использованием математического моделирования. Антибиот, и химиотер. 1988; 33(10): 767-771. Овчинников Ю.А. Биоорганическая химия. М., 1987: 723, 731-734. Страчунский Л.С., Козлов С.Н. Макролиды в современной клинической практике. Смоленск: Русич, 1998. Яковлев С.В., Яковлев В.П. Современная антимикробная терапия в таблицах. Consilium Medicum 2009; 11(4). Abe М., Furukawa S., Takayama S. ef al. Drug-induced hepatitis with autoimmune features during minocycline therapy. Intern. Med. 2003; 42: 48-52. Ahmed W., Rahmani M., Dent P., Grant

S.  The cyclin-dependent kinase inhibitor p21(CIPl/WAFl) blocks paclitaxel-induced G2M arrest and attenuates mitochondrial injury and apoptosis in p53-null human leukemia cells.

Cell Cycle 2004; 3: 130. Agarwal S.K., Tewari M., Banerjee G. A study on transferable R-plasmids among Shigella species at Lucknow. J. Commun. Dis. 1997; 29: 351-354. Akamatsu H., Asada M., Komura J. et al. Effect of doxycycline on the generation of reactive oxygen species: a possible mechanism of action of acne therapy with doxycycline. Acta Derm. Venereol. 1992; 72: 178-179.

л Akunda J.K., Johnson E., Ahrens F.A., Kramer T.T. Chlortetracycline modulates acute phase response of ex vivo perfused pig livers, and inhibits TNF-alpha secretion by iso-

lated Kupffer cells. Comp. Immunol. Microbiol. Infect. Dis. 2001; 24: 81-89. Amin A. R., AfturM.G., Thakker G.D. etal. A novel mechanism of action of tetracyclines: effects on nitric oxide synthases.

Proc. Natl. Acad. Sci. USA 1996; 93: 14014-14019. Amin A.R., Patel R.N., Thakker G.D. et al. Post-transcriptional regulation of inducible nitric oxide synthase mRNA in murine macrophages by doxycycline and chemically modified tetracyclines. FEBS Lett. 1997; 410: 259-264. Attur M.G., Patel R.N., Patel P.D. etal. Tetracycline up-regulates COX-2 expression and prostaglandin E2 production independent of its effect on nitric oxide. J. Immunol. 1999; 162: 3160-3167. Bab I.A. Regulatory role of osteogenic growth peptide in proliferation, osteogenesis, and hemopoiesis. Clin. Orthop. Relat. Res. 1995; 313: 64-68. Basakcilardan-Kabakci S., Thompson A., Cartmell E., Le Cor re K. Adsorption and precipitation of tetracycline with struvite. Water Environ. Res. 2007; 79: 2551-2556. Berger S.A. The use of antimicrobial agents for noninfectious diseases. Rev. Infect. Dis. 1985; 7: 357-367. Berman B., Perez O.A., Zell D. Update on rosacea and anti-inflammatory-dose doxycycline. Drugs Today (Bare.) 2007; 43: 27-34. Bettany J.T., Peet N.M., Wolowacz R.G. et al. Tetracyclines induce apoptosis in osteoclasts. Bone 2000; 27: 75-80. Bettany J.T., Wolowacz R.G. Tetracycline derivatives induce apoptosis selectively in cultured monocytes and macrophages but not in mesenchymal cells. Adv. Dent. Res. 1998; 12: 136-143. Borg R., Dotevall L., Hagberg L. et al. Intravenous ceftriaxone compared with oral doxycycline for the treatment of Lyme neu- roborreliosis. Scand. J. Infect. Dis. 2005; 37: 449-454. Cosentino U., Pitea D., Мого G. et al. The

anti-fibrillogenie activity of tetracyclines on PrP 106-126: a 3D-QSAR study. J. Mol. Model. 2008; 14: 987-994. D'Agostino P., Arcoleo F., Barbera C. et al.

Tetracycline inhibits the nitric oxide synthase activity induced by endotoxin in cultured murine macrophages. Eur. J. Pharmacol. 1998; 346: 283-290. D'Agostino P., Ferlazzo V., Milano S. et al.

Chemically modified tetracyclines induce cytotoxic effects against J774 tumour cell line by activating the apoptotic pathway.

Int. Immunopharmacol. 2003; 3: 63-73. Debrah A.Y., MandS., SpechtS. etal. Doxycycline reduces plasma VEGF-C/sVEGFR-3 and improves pathology in lymphatic filari- asis. PLoS Pathog. 2006; 2: 92. Del Rosso J.Q., Webster G.F., Jackson M. et al. Two randomized phase III clinical trials evaluating anti-inflammatory dose doxycycline (40-mg doxycycline, USP capsules) administered once daily for treatment of rosacea. J. Am. Acad. Dermatol. 2007; 56: 791-802. Dizer U., Hayat L., Beker C.M. et al. The effect of the doxycycline-rifampicin and le- vamisole combination on lymphocyte subgroups and functions of phagocytic cells in patients with chronic brucellosis. Chemotherapy 2005; 51: 27-31. Doan T.L., Fung H.B., Mehta D., Riska P.F.

Tigecycline: a glycylcycline antimicrobial agent. Clin. Then 2006; 28: 1079-1106. Familian A., Boshuizen R.S., Eikelenboom P., Veerhuis R. Inhibitory effect of minocycline on amyloid beta fibril formation and human microglial activation. Glia. 2006; 53: 233-240. Familian A., Eikelenboom P., Veerhuis R. Minocycline does not affect amyloid beta phagocytosis by human microglial cells. Neurosci. Lett. 2007; 416: 87-91. Favre D., Blouin V., Provost N. et al. Lack of an immune response against the tetracycline-dependent transactivator correlates with long-term doxycycline-regulated transgene expression in nonhuman primates after intramuscular injection of recombinant adeno-associated virus. J. Virol. 2002; 76: 11605-11611. FeuillardJ., KorndoerferM., SchleeM. etal.

Stringent doxycycline-dependent control of gene activities using an episomal one-vector system. Nucleic Acids Res. 2005; 33: 137. Forloni G., lussich S., Awan T. et al. Tetracyclines affect prion infectivity. Proc. Natl. Acad. Sci. USA 2002; 99: 10849-10854. Fu X., Parks W.C., Heinecke J.W. Activation and silencing of matrix metalloproteinases. Semin. Cell Dev. Biol. 2008; 19: 2-13. Furuke K., Burd P.R., Horvath-Arcidiaco- no l.A. ef at. Human NK cells express endothelial nitric oxide synthase, and nitric oxide protects them from activation-induced cell death by regulating expression of TNF-al- pha.

J. Immunol. 1999; 163: 1473-1480. Garner S.E., Eady E.A., Popescu C. et al. Minocycline for acne vulgaris: efficacy and safety. Cochrane Database Syst. Rev. 2003; 1: CD002086. Giuliani F., Fu S.A., Mefz L.M., Yong V.W.

Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J. Neuroimmunol. 2005; 165: 83-91. Giuliani F., Metz L.M., Wilson T. etal. Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. J. Neuroimmunol. 2005; 158: 213-221. Giuliani F., Yong V.W. Immune-mediated neurodegeneration and neuroprotection in MS. Int. MS J. 2003; 10: 122-130. Haruna T., Mochizuki Y., Nakahara Y. et al. A case of minocycline-induced pneumonitis with bronchial asthma. Nihon Kyobu Shik- kan Gakkai Zasshi. 1994; 32: 671-675. Heeb H.L., Wilkerson M.J., Chun R., Gan- ta R.R. Large granular lymphocytosis, lymphocyte subset inversion, thrombocytopenia, dysproteinemia, and positive Ehrlichia serology in a dog. J. Am. Anim. Hosp. Assoc. 2003; 39: 379-384. Henriksen J.R., Lokke C., Hammero M. etal.

Comparison of RNAi efficiency mediated by tetracycline-responsive HI and U6 promoter variants in mammalian cell lines. Nucleic Acids Res. 2007; 35: 67. Higashiyama S., Kawabe J., Torii K. et al.

Usefulness of Tc-99m PMT hepatobiliary scintigraphy in preoperative evaluation of flow of biliary drainage in a patient with a biliary-gastric fistula. Clin. Nucl. Med. 2007; 32: 889-890. Holmes S.G., Still K., Buttle D.i. et al. Chemically modified tetracyclines act through multiple mechanisms directly on osteoclast precursors. Bone 2004; 35: 471-478. Hoyt J.C., Battering J., Numanami H. et al.

Doxycycline modulates nitric oxide production in murine lung epithelial cells. J. Immunol. 2006; 176: 567-572. Ingman T., Sorsa T., Suomalainen K. et al.

Tetracycline inhibition and the cellular source of collagenase in gingival crevicu- lar fluid in different periodontal diseases. J. Periodontol. 1993; 64: 82-88.

Iwasaki H., Inoue H., Mitsuke Y. et al. Doxycycline induces apoptosis by way of cas- pase-3 activation with inhibition of matrix metalloproteinase in human T-lymphoblas- tic leukemia CCRF-CEM cells. J. Lab. Clin. Med. 2002; 140: 382-619. Iwasaki H., Inoue H., Takada N. et al. Cytokine modulation induced by minocycline in Tsutsugamushi disease. Kansenshogaku Zasshi. 2000; 74: 598-600. Jain A., Sangal L., Basal E. et al. Anti-inflammatory effects of erythromycin and tetracycline on Propionibacterium acnes induced production of chemotactic factors and reactive oxygen species by human neutrophils. Dermatol. Online J. 2002; 8: 2. Jones D.S., Woolfson A.D., Brown A.F. et al. Design, characterisation and preliminary clinical evaluation of a novel mucoadhesive topical formulation containing tetracycline for the treatment of periodontal disease. J. Control Release 2000; 67: 357—368. Kalish R.S., Koujak S. Minocycline inhibits antigen processing for presentation to human T cells: additive inhibition with chlo- roquine at therapeutic concentrations. Clin. Immunol. 2004; 113: 270-277. Khadzhieva Z., Chernev K., lordanova E. A case of severe methacycline damage to the liver and bone marrow. Vutr. Boles. 1987; 26: 115-117. Khrestchatisky M., Jourquin J., Ogier C. et

al. Matrix metallo-proteinases and their inhibitors, modulators of neuro-immune interactions and of pathophysiological processes in the nervous system. J. Soc. Biol. 2003; 197: 133-134. KloppenburgM., Brinkman B.M., de Rooij-Dijk H.H. etal. The tetracycline derivative minocycline differentially affects cytokine production

by monocytes and T lymphocytes. Antimicrob. Agents Chemother. 1996; 40: 934-940. Kloppenburg M., Dijkmans B.A., Breedveld F.C. Hypersensitivity pneumonitis during minocycline treatment. Neth J. Med. 1994; 44: 210-213. Kloppenburg M., Dijkmans B.A., Verweij C.L., Breedveld F.C. Inflammatory and immunological parameters of disease activity in rheumatoid arthritis patients treated with minocycline.

Immunopharmacology 1996; 31:163-169. Kloppenburg M., Verweij C.L., Miltenburg A.At. etal. The influence of tetracyclines on T cell activation. Clin. Exp. Immunol. 1995; 102: 635-641. Kozak A., ErgulA., FlessD.C. etal. Delayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006; 7: 56. KremlevS.G., Roberts R.L., Palmer C. Minocycline modulates chemokine receptors but not interleukin-10 mRNA expression in hypoxic- ischemic neonatal rat brain. J. Neurosci. Res. 2007; 85: 2450-2459. Kues W.A., Schwinzer R., Wirth D. et al. Epigenetic silencing and tissue independent expression of a novel tetracycline inducible system in double-transgenic pigs. FASEB J. 2006; 20: 1200-1202. Kuzin Snyder J.E., Ugine G.D. etal. Tetracyclines inhibit activated В cell function. Int. Immunol. 2001; 13: 921-931. Lee C.Z., Yao J.S., Huang Y. et al. Dose-response effect of tetracyclines on cerebral matrix metalloproteinase-9 after vascular endothelial growth factor hyperstimulation. J. Cereb. Blood Flow Metab. 2006; 26:1157-1164. LeppertD., Lindberg R.L., Kappos L., Leib S.L. Matrix metalloproteinases: multifunctional effectors of inflammation in multiple sclerosis and bacterial meningitis. Brain Res. Rev. 2001; 36: 249-257. Liu J., Kuszynski C.A., Baxter B.T. Doxycycline induces Fas/Fas ligand-mediated apoptosis in Jurkat T lymphocytes. Biochem. Biophys. Res. Commun. 1999; 260: 562—567. LokeshwarB.L., EscatelE., ZhuB. Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Curr. Med. Chem. 2001; 8: 271-279. LokeshwarB.L., SelzerM.G., ZhuB.Q. etal. Inhibition of cell proliferation, invasion, tumor growth and metastasis by an oral non-antimicrobial tetracycline analog (COL-3) in a metastatic prostate cancer model. Int. J. Cancer 2002; 98: 297-309. MachadoL.S., Kozak A., ErgulA. etal. Relayed minocycline inhibits ischemia-activated matrix metalloproteinases 2 and 9 after experimental stroke. BMC Neurosci. 2006; 7: 56. Massung R.F., Zeidner N.S., Dolan М.С. et al. Prophylactic use of sustained-release doxycycline blocks tick-transmitted infection by Ana- plasma phagocytophilum in a murine model. Ann. NY Acad. Sci. 2005; 1063: 436-438. Muhlethaler-Mottet A., Bourloud K.B., Aud- erset K. et al. Drug-mediated sensitization to TRAIL-induced apoptosis in caspase-8-com- plemented neuroblastoma cells proceeds via activation of intrinsic and extrinsic pathways and caspase-dependent cleavage of XIAP, Bcl- xL and RIP. Oncogene 2004; 23: 5415-5425. NualartP., SenL., EstevezM.E., DiezR.A. Inhibition of E-and EAC-rosette formation by gentamicin, ampicillin and tetracycline. Biomed. Pharmacother. 1985; 39:187-191. Onoda T., Ono T., DharD.K. etal. Tetracycline analogues (doxycycline and COL-3) induce caspase-dependent and -independent apoptosis in human colon cancer cells. Int. J. Cancer 2006; 118:1309-1315. PasternakB., FelleniusM., AspenbergP. Doxycycline impairs tendon repair in rats. Acta Or- thop. Belg. 2006; 72: 756-760. PatelR.N., AtturM.G., DaveM.N. etal. A novel mechanism of action of chemically modified tetracyclines: inhibition of СОХ-2-mediated prostaglandin E2 production. J. Immunol. 1999; 163: 3459-3467. Petrova T.B. Effect of tetracycline hydrochloride on the development of the thymus structure in the rat. Farmakol. Toksikol. 1984; 47: 66-70. Ruan S., Young E., Luce M.J. et al. Conditional expression of interferon-gamma to enhance host responses to pulmonary bacterial infection. Pulm. Pharmacol. Ther. 2006; 19: 251-257. RudnerJ., Jendrossek V., LauberK. etal. Type I and type II reactions in TRAIL-induced apoptosis — results from dose-response studies. Oncogene 2005; 24:130-140. Salusky I.B., Juppner H. New PTH assays and renal osteodystrophy. Pediatr. Nephrol. 2004; 19: 709-713. Sandler C., Ekokoski E., Lindstedf K.A. et al.

Chemically modified tetracycline (CMT)-3 inhibits histamine release and cytokine production in mast cells: possible involvement of protein kinase C. Inflamm. Res. 2005; 54: 304-312. Sandler C., Nurmi K., Lindstedi K.A. ef al. Chemically modified tetracyclines induce apoptosis in cultured mast cells. Int. Immuno- pharmacol. 2005; 5:1611-1621. Savitskaia T.N. Prenatal action of tetracycline hydrochloride on lymph node development in the rat. 1984; 47: 70-74. Sbapira L., Barak V., Soskolne W.A. et al. Effects of tetracyclines on the pathologic activity of endotoxin: in vitro and in vivo studies. Adv. Dent. Res. 1998; 12:119-122. Smith V.A., CookS.D. Doxycycline-a role in ocular surface repair. Br. J. Ophthalmol. 2004; 88: 619-625. Smith-Norowitz T.A., Bluth M.H., Drew H. etal.

Effect of minocycline and doxycycline on IgE responses. Ann. Allergy Asthma Immunol. 2002; 89: 172-179. Solomon A., Rosenblatt M., Li D.Q. etal. Doxycycline inhibition of interleukin-1 in the corneal epithelium. Invest. Ophthalmol. Vis. Sci. 2000; 41: 2544-2557. Sorsa T., Ding Y., Salo T. et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. Ann. NY Acad. Sci. 1994; 732:112-131. Sriram K., Miller D.B., O'Callaghan J.P. Minocycline attenuates microglial activation but fails to mitigate striatal dopaminergic neurotoxicity: role of tumor necrosis factor-alpha. J. Neurochem. 2006; 96: 706-718. Suomalainen K., Sorsa T., Ingman T. etal. Tetracycline inhibition identifies the cellular origin of interstitial collagenases in human periodontal diseases in vivo. Oral Microbiol. Immunol. 1992; 7:121-123. Van den Bogert C., Metis T.E., Kroon А./VI. Mitochondrial biogenesis during the activation of lymphocytes by mitogens: the immunosup-

1 pressive action of tetracyclines. J. Leukoc. Biol. 1989; 46: 128-133. Walters J.D. Characterization of minocycline transport by human neutrophils. J. Periodontal. 2006; 77:1964-1968. Walters J.D., Nakkula R.J., Maney P. Modulation of gingival fibroblast minocycline accumulation by biological mediators. J. Dent. Res. 2005; 84: 320-324. Webster G.F., Toso S.M., Hegemann L. Inhibition of a model of in vitro granuloma formation by tetracyclines and ciprofloxacin. Involvement of protein kinase C. Arch. Dermatol. 1994; 130: 748-752. Xiao Y., Kuwata T., Miura T. et al. Dox-depen- dent SIVmac with tetracycline-inducible promoter in the U3 promoter region. Virology 2000; 269: 268-275. Yong V.W. Immune-mediated neurodegeneration and neuroprotection in MS. Int. MS J. 2003; 10:122-130. Yong V.W., Wells J., Giuliani F. etal. The promise of minocycline in neurology. Lancet Neurol. 2004; 3: 744-751. Zeidner N.S., Brandt K.S., Dadey E. et al. Sustained-release formulation of doxycycline hy- clate for prophylaxis of tick bite infection in a murine model of Lyme borreliosis. Antimicrob. Agents Chemother. 2004; 48: 2697-2699. ZhanelG.G., HomenuikK., NicholК. etal. The glycylcyclines: a comparative review with the tetracyclines. Drugs 2004; 64: 63-88. ZhanelG.G., KarlowskyJ.A., RubinsteinE., Ho- ban D.J. Tygecycline — the new glycylcycline antibiotic. Exp. Rev. Antiinfect. Ther. 2006; 4: 9-25. Zhao C., Ling Z., Newman /VI.8. et al. TNF- alpha knockout and minocycline treatment attenuates blood-brain barrier leakage in MPTP-treated mice. Neurobiol. Dis. 2007; 26: 36-46.

<< | >>
Источник: Н.Д. Ющука, И.П. Балмасовой, В.Н. Царева. Антибиотики и противоинфекционный иммунитет2012. 2012

Еще по теме Литература:

  1. Литература
  3. Список используемой литературы
  5. Литература
  6. Литература
  7. Литература
  8. Литература
  9. Литература
  10. Литература
  11. Литература